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Abstract

This paper studies the evaluation of routing algorithms from the perspective of reachability routing, where the goal is

to determine all paths between a sender and a receiver. Reachability routing is becoming relevant with the changing

dynamics of the Internet and the emergence of low-bandwidth wireless/ad hoc networks. We make the case for rein-

forcement learning as the framework of choice to realize reachability routing, within the confines of the current Internet

infrastructure. The setting of the reinforcement learning problem offers several advantages, including loop resolution,

multi-path forwarding capability, cost-sensitive routing, and minimizing state overhead, while maintaining the incre-

mental spirit of current backbone routing algorithms. We identify research issues in reinforcement learning applied to

the reachability routing problem to achieve a fluid and robust backbone routing framework. This paper also presents

the design, implementation and evaluation of a new reachability routing algorithm that uses a model-based approach to

achieve cost-sensitive multi-path forwarding; performance assessment of the algorithm in various troublesome topol-

ogies shows consistently superior performance over classical reinforcement learning algorithms. The paper is targeted

toward practitioners seeking to implement a reachability routing algorithm.

� 2003 Published by Elsevier B.V.
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1. Introduction

With the continuing growth and dynamicism of

large scale networks, alternative evaluation criteria

for routing algorithms are becoming increasingly

important. The emergence of low-bandwidth ad
hoc mobile networks requires routing algorithms

that can distribute data traffic across multiple
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paths and quickly adapt to changing conditions.

Multi-path routing offers several advantages, in-

cluding better bandwidth utilization, bounding

delay variation, minimizing delay, and improved

fault tolerance. Furthermore, current single-path

routing algorithms face route oscillations (or flap),
since they switch routes as a step function. The

solution has been to choose low variance routing

metrics that are not amenable to route flap, which

incidentally are also metrics that don�t represent

the true state of the network. Good multi-path

routing involves gradual changes to routes and

should work well even with high variance routing

metrics.
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While multi-path routing is a desirable goal, the

current Internet routing framework cannot be

easily extended to support it. One solution is to

develop a new multi-path routing framework,

which necessitates changes to the Internet�s net-

working protocol (IP). The main problem here
stems from deployability concerns. Our approach

is to study multi-path routing within the confines

of the current Internet protocol, which leads to

interesting design decisions.

In this paper, we approach multi-path routing

from the limiting perspective of reachability rout-

ing, where the routing algorithm attempts to de-

termine all paths between a sender and a receiver.
We present a survey of algorithm design meth-

odologies, with specific reference to capturing

reachability considerations. The paper is struc-

tured as a series of arguments and observations

that lead to identifying reinforcement learning as

the framework to achieve reachability routing. We

consider tradeoffs in configuring reinforcement

learning and pitfalls in traditional approaches.
These ideas and arguments are focused in the end

of the paper toward the practical design, im-

plementation, and evaluation of a reachability

routing algorithm on concrete topologies. By

identifying novel dimensions for characterizing

routing algorithms and showcasing important

implementation considerations, our work helps
Fig. 1. Organization
provide organizing principles for the development

of practical reachability routing algorithms.
2. Definitions

A network (see Fig. 1) consists of nodes, where a

node may be a host or a router. Hosts generate and

consume the data that travels through the net-

work. Routers are responsible for forwarding data

from a source host to a destination host. Physi-

cally, a router is a switching device with multiple

ports (also called interfaces). Ports are used to

connect a router to either a host or another router.
On receiving a data packet through a port, a

router extracts the destination address from the

packet header, consults its routing table, and de-

termines the outgoing port for that data packet.

The routing table is a data structure internal to the

router and associates destination network ad-

dresses with outgoing ports. Routing is thus a

many-to-one function which maps (many) desti-
nation network addresses to an outgoing port. In

the case of IP networks, this function maps a 32 bit

IP address space to a 4–7 bit output port number.

Intuitively, the quality of routing is directly influ-

enced by the accuracy of the mapping function in

determining the correct output port. The reader

should keep in mind that routers are physically
of a network.



S. Varadarajan et al. / Computer Networks 43 (2003) 389–416 391
distinct entities that can only communicate by

exchanging messages. The process of creating

routing tables hence involves a distributed algo-

rithm (the routing protocol) executing concurrently

at all routers. The goal of the routing protocol is

to derive loop-free paths.
Organizationally, a network is divided into

multiple autonomous systems (AS). An autono-

mous system is defined as a set of routers that

use the same routing protocol. Generally, an au-

tonomous system contains routers within a single

administrative domain. An Interior Gateway Pro-

tocol (IGP) is used to route data traffic between

hosts (or networks) belonging to a single AS. An
Exterior Gateway Protocol (EGP) is used to route

traffic between distinct autonomous systems.

The effectiveness of a routing protocol directly

impacts both the end-to-end throughout and end-

to-end delay. Current network routing protocols

are primarily concerned with deriving shortest-cost

routes between a source and a destination. This

focus on an optimality metric 1 means that current
protocols are tailored toward single-path routing. 2

In the recent past, there has been an increasing

emphasis on multi-path routing, where routers

maintain multiple distinct paths of arbitrary costs

between a source and a destination.

Multi-path routing presents several advantages.

First, a multi-path routing protocol is capable of

meeting multiple performance objectives––maxi-
mizing throughput, minimizing delay, bounding

delay variation, and minimizing packet loss. Sec-

ond, from a scalability perspective, multi-path

routing makes effective use of the graph structure

of a network (as opposed to single-path routing,

which superimposes a logical routing tree upon

the network topology). Third, multi-path routing

protocols are more tolerant of network failures.
Finally, multi-path routing algorithms are less

susceptible to route oscillations, which enables the
1 Note that the notion of optimality is used in this paper with

respect to a node�s view of the network, and does not reflect

optimality according to some global criterion (such as mini-

mizing total traffic). For a comprehensive treatment of globally

optimal routing algorithms, refer to [3].
2 This scheme can be trivially extended to the case when

there are multiple shortest-path routes.
use of high-variance cost metrics that are better

congestion indicators. In a single-path routing al-

gorithm, use of a good congestion indicator (such

as average queue length at a router) as a cost

metric leads to route oscillations.

Multi-path routing can be qualified by the state
maintained at each router and the routing gra-

nularity. For instance, a routing algorithm can

maintain multiple, distinct, shortest-cost routing

tables, where each table is based on a different cost

metric. We refer to this as a multi-metric, multi-

path routing approach. A second approach is to

allow multiple network paths between a source–

destination pair for a single cost metric. This
means that routers may use sub-optimal paths; for

instance a router may send data on multiple paths

to maximize network throughput. We refer to this

a single-metric, multi-path routing approach.

Multi-path routing algorithms can also be dis-

tinguished by the routing granularity into coarse

grain, connection- (or flow-) oriented or fine grain,

connectionless approaches. The former adopts a
path-per-connection view where all packets be-

longing to a single connection follow the same

path. However, different connections between the

same source and destination hosts may follow

different paths. In contrast, connectionless net-

works have no mechanism to associate packets

with any higher-level notion of a connection;

hence multi-path routing in connectionless net-
works requires a fine-grained approach. For true

multi-path routing, the routing algorithm should

forward packets between a single source–destina-

tion pair along multiple paths, which may not

necessarily be shortest-cost paths. The focus of this

paper is on such fine grain multi-path routing al-

gorithms within a single-metric domain (see Fig.

2). These algorithms can be trivially extended for
use in both coarse grain as well as multi-metric

routing domains.

One way to achieve this form of multi-path

routing is to extend existing single-path network

routing protocols. This extension is non-trivial for

two reasons. First, we need mechanisms to incor-

porate state corresponding to multiple (possibly

non-optimal) paths into the routing table. More
importantly, we need new loop detection algo-

rithms; current shortest-path routing algorithms



Fig. 2. Four basic categories of algorithms for multi-path

routing. The shaded region depicts the class of algorithms

studied in this paper.
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use their optimality metric to implicitly eliminate

loops. This assumption is untenable for multi-path

routing in a single-metric domain. Resolving these
issues typically requires routers to maintain (and

keep consistent) routing state proportional to the

number of paths in the network.

In this paper, we approach multi-path rout-

ing from the terminal perspective of reachability

routing. The goal of reachability routing is to de-

termine all paths between a sender and a receiver,

without the aforementioned state or consistency
maintenance overhead. This paper introduces two

forms of reachability routing. In hard reachability,

the routing table at each router contains all and

only loop free paths that exist in the network

topology. Soft reachability, on the other hand,

merely requires that all loop free paths be repre-

sented in the routing table. While basic reachability

routing is primarily concerned with determining
multiple paths through the network, practical im-

plementations are also interested in determining

the relative quality of these paths, a form we call

cost-dependent reachability routing.

As we will show later, practical limitations on

the amount of state that can be carried by a net-

work packet preclude any solution for hard

reachability. 3 Hence, this paper addresses the
3 To achieve hard reachability for single-metric fine grain

routing, the data packet has to carry an arbitrary-length list of

visited routers. Fixed-length network packet headers cannot

accommodate this information.
problem of soft reachability. We argue that even

this goal cannot be achieved by directly extending

existing routing protocols or even by explicitly

programming for it. Instead, we achieve reach-

ability routing by exploiting the underlying se-

mantics of probabilistic routing algorithms. The
algorithms we advocate ensure correct operation

of the network even under soft reachability.
3. Background

Before we look at algorithm design methodol-

ogies, it would be helpful to review the standard
algorithms that form the bulwark of the current

network routing infrastructure. While some of

these have not been designed with reachability in

mind, they are nevertheless useful in characterizing

the design space of routing algorithms. The survey

below is merely intended to be representative of

current network routing algorithms; for a more

complete survey, see [20]. This section addresses
deterministic routing algorithms and the next ad-

dresses probabilistic routing algorithms. What is

relevant for our purposes are not the actual algo-

rithms but rather their signature patterns of in-

formation exchange.

3.1. Link state routing (OSPF)

Link-state algorithms are characterized by a

global information collection phase, where each

router broadcasts its local connectivity to every

other router in the network. Every router inde-

pendently assimilates the topology information to

build a complete map of the network, which is

then used to construct routing tables. The most

common manifestation of link-state algorithms is
the Open Shortest Path First (OSPF) routing

protocol [17,18], developed by the IETF for TCP/

IP networks. OSPF is an Interior Gateway Pro-

tocol in that it is used to communicate routing

information between routers belonging to the

same autonomous system [8].

The connectivity information broadcast by

every router includes the list of its neighboring
routers and the cost to reach every one of them,

where a neighboring router is an adjacent node in
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the topology map. After such broadcasts have

flooded through the network, every router running

the link-state algorithm constructs a map of the

(global) network topology and computes the

cost––a single-valued dimensionless metric––of

each link of the network. Using the network to-
pology, each router then constructs a shortest path

tree to all other routers in the autonomous system,

with itself as the root of the tree. This is typically

done using Dijkstra�s shortest path algorithm.

While the shortest path tree gives the entire path to

any destination in the AS, a router need only know

the outgoing interface for the next hop along a

path. This information is captured in the routing
table maintained by each router. The routing table

thus contains routing entries which associate a

destination address in an incoming data packet

with the appropriate outgoing physical interface.

The defining characteristic of a link-state algo-

rithm is that each router sends information about

local neighbors to all participating routers.

Link-state algorithms are generally dynamic in
nature. As the network topology or link costs

change, routers exchange information and re-

compute shortest path trees to ensure that their

local database is consistent with the current state

of the network. The optimality principle ensures

that as long the topological maps are consistent,

the routing tables computed by each router will

also be consistent.
To derive the time complexity of the link-state

routing algorithm, note that computing the rout-

ing table involves running Dijkstra�s algorithm on

the network topology. If the network contains R
routers, the asymptotic behavior of the standard

implementation of Dijkstra�s algorithm is given by

OðR2Þ. A heap-based implementation of Dijkstra�s
algorithm reduces the computational complexity
to OðR logRÞ. This computational cost is lower

than the distance-vector protocol discussed in the

next section. However, link-state algorithms trade

off communication bandwidth against computa-

tional time. To derive the communication cost,

note that the size of the routing topology trans-

mission by each router is proportional to N , the

number of neighbors connected to the router.
Since the routing topology is broadcast to every

other router, every routing transmission travels
over all links (L) in the network. Hence, the com-

munication cost of a routing topology transmis-

sion by a single router is OðNLÞ and the cumulative

cost of the routing transmissions by all routers is

OðRNLÞ. We make three observations about link-

state algorithms.

Observation 1. Routers participating in a link-

state algorithm transmit raw or non-computed

information among themselves, which is then used

as the basis for deriving routing tables. The ad-

vantage of this scheme is that a router only sends

information it is sure of, as opposed to �hearsay�
information used by the distance-vector routing
protocols described in the next section.

Observation 2. Link-state algorithms are intrinsi-

cally targeted towards single-path routing since

they base their correctness on the optimality

principle. A trivial extension allows OSPF (in

particular) to use multi-path routing when two

paths have identical costs, since this does not vi-
olate the optimality principle. Another extension

allows multiple shortest path trees, where each tree

is based on a different cost metric.

Observation 3. Link-state algorithms have an ex-

plicit global information collection phase before

they can populate routing tables and begin rout-

ing.

3.2. Distance vector routing (RIP)

As opposed to link-state algorithms, which have

a global information collection phase, distance-

vector algorithms build their routing tables by an

iterative computation of the distributed Bellman–

Ford algorithm. The most common manifestation
of distance-vector algorithms in the TCP/IP In-

ternet is in the form of the Routing Information

Protocol (RIP) [13,15]. RIP is based on the 1970s

Xerox network protocols used in XNS networks,

with adaptations to enable it to work in IP net-

works.

In the distance-vector protocol (DVP), every

router maintains a routing database, which only
contains the best known path costs to each desti-

nation router in the AS. In each iteration, every
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router in the AS sends its routing tables, to all its

neighbors. On receiving a routing table, each tar-

get router compares the routing entries in the re-

ceived routing table with its own entries. If the

received routing table entry has a better cost, the

target router replaces its path cost and corre-
sponding outgoing interface with the information

received, and propagates the new information. The

algorithm stabilizes when every router in the sys-

tem has indirectly received routing tables from

every other router in the AS. The defining char-

acteristic of DVP algorithms is that each router
sends information about all participating routers to
its local neighbors.

When the DVP algorithm begins, each DVP

router knows the link cost to its neighbors. In the

first iteration of the DVP algorithm, each router

sends information about its neighbors to its

neighbors. At the end of the iteration, each router

knows the current best path costs to all routers

within 1 hop from itself––a graph with a diameter

of 2. With every passing iteration, each router
expands its horizon by 1, i.e., the diameter of the

graph known to a router increases by 1. The al-

gorithm finally stabilizes when each router has

expanded its horizon to the diameter of the net-

work.

To derive the time complexity of this algorithm,

note that on each iteration, a router receives OðNÞ
routing tables, where N is the number of neigh-
bors. Each routing table contains R entries, where

R is the number of participating routers in the AS.

On each iteration, every router in the AS expands

the network neighborhood that it knows about by

1. The algorithm stabilizes when each router has

expanded its horizon to the diameter of the net-

work D. Hence the time complexity of DVP is

OðNRDÞ.
The traditional DVP suffers from a classic

convergence problem called �count to infinity.�
Assume a network with four routers A, B, C and

D connected linearly, i.e. A $ B $ C $ D. As-

sume that A�s best path cost to D is x. If router D
is removed from the network, C advertises a path

cost (to D) of infinity to B, but in the same itera-

tion A announces its previous best path cost x to
B, without realizing that its route to D goes

through B. Since x is less than infinity, B essentially
ignores the update from C. In the next iteration, B

then propagates its best cost to D to routers A and

C. In the following iteration, A updates its path

cost estimate to D since it received an update from

B, which affects its lowest cost route to D. This

change in the lowest cost is sent to B on the next
iteration, which updates its estimate again. The

routers are now stuck in a loop, incrementing their

path costs on each iteration, till they reach the

upper bound on path costs, which is nominally

defined to be infinity.

The standard solution to the count to infinity

problem is to enforce an upper bound on the

path costs. The path cost metric generally used in
DVP is the length of the path. Hence, the upper

bound on path costs translates to an upper

bound on the diameter of the network. The RIP

(v1; [13]) restricts the diameter of the network to

15 hops.

The problem with the traditional solution is

twofold. First, restricting the network to small

diameters impedes scalability. Second, the length
of a path is not a good indicator of the quality of

the path. The problem with choosing better cost

metrics––such as average queue length at a router

or minimum available bandwidth along a path––is

that it increases convergence time significantly.

Several solutions have attempted to address this

issue by speeding up the time taken to count to

infinity. However, note that there is no solution to
eliminate the count to infinity problem, using just

the information collected by the DVP. The only

solution to the count to infinity problem is to

maintain explicit path information along with the

best cost estimate. This mechanism is used by the

path vector routing protocol described later.

The main advantage of the DVP is that amount

of routing information sent is quite small. In
contrast to the link-state algorithm, routing

information is only sent to neighbors, which sig-

nificantly reduces the network bandwidth re-

quirement. Furthermore, DVP does not have an

explicit information collection phase––it builds its

routing tables incrementally. Hence, it can begin

routing as soon as it has any path cost estimate to

a destination. From the perspectives of this paper,
we make two observations about distance-vector

protocols.
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Observation 4. Distance-vector protocols pass

computed information or �hearsay� among them-

selves. This hearsay is not qualified in any way––

for instance, routers indicate their best path cost,

but not the path itself.

Observation 5. Distance-vector protocols are in-

trinsically targeted towards single-path routing,

since each router filters the routing updates it re-

ceives and only transmits the best route.

3.3. Comparing link-state and distance-vector pro-

tocols

The distance-vector and link-state protocols

have traditionally been considered as two orthog-

onal approaches to network routing. Alterna-

tively, we can view them as two extremes along a

�scope of information qualification� axis, which

allows us to interpolate between these algorithms.

In the link-state protocol, each router sends raw
cost information about its immediate connectivity.

In this case, we define the scope of information

qualification to be 1, or the distance to the im-

mediate neighbor. At the other extreme, we have

the distance-vector protocol in which each router
Fig. 3. Topology of the data network (a) and the topologies of the co

a distance-vector algorithm (c).
sends cost information about every other router,

i.e., the scope of information qualification is in-

finity, or more precisely the diameter of the net-

work. A generalized algorithm will employ a

parameter a to denote the diameter of the neigh-

borhood that is viewed as a single �super node� by
the routing algorithm. Within the super node, the

distance-vector protocol is used to compute paths,

and the link-state protocol operates at the level of

super-nodes. As a tends to the diameter of the

network, the size of the super node tends to

the size of the entire network, which collapses the

generalized algorithm to the distance-vector pro-

tocol.
In addition to the interpolatory viewpoint, it is

instructive to contrast the operational behavior of

the link-state and distance-vector routing proto-

cols. We can think of a single network as consist-

ing of two superimposed components: a data

network, which only carries end user data and a

control network, which carries the routing infor-

mation used by routers to determine routes in the
data network. This viewpoint studies the topology

of the control network induced by a routing pro-

tocol and its relation to the topology of the data

communication network (see Fig. 3).
rresponding control networks for a link-state algorithm (b) and



396 S. Varadarajan et al. / Computer Networks 43 (2003) 389–416
Observation 6. A link-state algorithm broadcasts

raw topology information to all routers in the

network using a pruned flooding approach to

eliminate data loops. Since the raw topology in-

formation can be locally collected by each router,
the topology of the parallel control network is

distinct from the topology of the data network.

Every node in the control network is connected to

every other node. This illustrates the fact that the

environment about which we learn (to route) is

distinct from the mechanism used to communicate

the routing information. Such a distinction enables

the separation of the data collection and routing
phases.

Observation 7. In contrast, in the distance-vector

algorithm each router communicates best-cost

path information to all its neighbors. Computing

the best-cost path requires that the paths present in

the data network be present in the control network

as well. Hence, the topology of the control net-
work has to be identical to the data network to-

pology. In effect, each link in the control network

mirrors a physical link in the data network. This

illustrates the fact that the mechanism used to

communicate routing information is the same as

the environment where the information is to be

used.

3.4. Path vector routing (BGP, IDRP)

The path vector algorithm improves the basic

distance-vector protocol to include additional in-

formation qualifiers to eliminate the count-to-

infinity problem. The Border Gateway Protocol

(BGP) and the Inter-Domain Routing Protocol

(IDRP) are two common implementations of path
vector routing algorithms. Unlike the link-state

and distance-vector routing algorithms, path vec-

tor algorithms are generally used between auton-

omous systems, i.e., path vector is an exterior

gateway protocol, operating at the scope of a

backbone �network of networks.� The main moti-

vation behind the path vector algorithm is to allow

autonomous systems greater control in routing
decisions.

In the path vector algorithm, routers are iden-

tified by unique numerical identifiers. Each router
maintains a routing table, where each entry in the

routing table contains a list of explicit paths––

specified as a sequence of router identifiers (path-

vector)––to a destination router. The list of

path-vectors is ordered based on domain-specific

policy decisions––such as contractual agreements
between autonomous systems, rather than a

quantitative cost metric. This scheme avoids im-

posing a single, universally adopted cost-metric.

In each iteration, every router in the AS trans-

mits a subset of its routing tables to all its neigh-

bors. In the transmitted subset, each routing table

entry contains a single �best� path-vector to desti-

nation router. The �best� path-vector is the first
path-vector in an ordered list of path-vectors. For

each routing entry in a received routing table, a

router (a) adds its router identifier to the path-

vector, (b) checks the newly created path-vector to

ensure there are no loops, (c) inserts the path-

vector into its own routing table, and (d) sorts the

list of path-vectors based on its selection criteria.

Paths with loops are discarded, which in effect
eliminates the count-to-infinity problem. The al-

gorithm progresses similar to the distance-vector

protocol, with each router expanding its horizon

by 1 on each iteration. The algorithm finally sta-

bilizes when each router has expanded its horizon

to the diameter of the network.

Observation 8. Path vector algorithms are intrin-
sically targeted towards single-path routing, since

each router filters the routing updates it receives

and only transmits the best path-vector. Interest-

ingly, the ingress router has a choice of routes;

intermediate routers along a path do not have a

choice.

Observation 9. Path vector algorithms pass quali-
fied computed information among themselves.

While the qualification serves to eliminate prob-

lems such as count to infinity, it is generally not

sufficient to invert the computation function––to

obtain the raw data carried by messages in a link-

state algorithm. Lack of raw data complicates the

credit assignment problem for cost-dependent

reachability routing. The credit assignment prob-
lem here is primarily structural: of all the nodes,

links, and subpaths that contribute to a certain
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quality metric in a path (e.g., transmission time,

path cost), which ones should be rewarded (or

penalized)?

3.5. Hierarchical routing

In TCP/IP networks, each host is identified by a

unique numerical identifier (IP address), which

consists of a network component and a host

component. The network component of the IP

address is hierarchically organized, allowing a set

of networks to be viewed as a single node in a

higher layer of the hierarchy. This hierarchical
organization is used to reduce the scope of the

routing problem. At the lowest level, routing

within a single network translates to routing

among the end-hosts. At the highest level, the

network can be viewed as a collection of nodes,

where each node is a network in itself, running an

internal routing algorithm, whose presence is

opaque to the higher levels of the hierarchy. This
organization allows each level in hierarchy the

freedom to choose a routing algorithm suited to its

needs.
4. Reinforcement learning algorithms

Reinforcement learning (RL) [14] is a branch of
machine learning that is increasingly finding use in

many important applications, including routing.

The ant-based algorithms of Subramanian et al.

[21] and the stigmergetic routing framework de-

scribed in [10] are examples of reinforcement

learning algorithms for routing. Here, populating

routing tables is viewed as a problem of learning

the entries; we hence use the term learning in this
paper synonymously with the task of determining

routing table entries.

The salient feature of RL algorithms is the

probabilistic nature of their routing table entries.

In the previously reviewed deterministic routing

algorithms, a routing table entry contains an out-

going interface identifier and a cost. In contrast,

routing table entries in RL algorithms contain all
outgoing interfaces and associated use probabili-

ties (see Fig. 4). The probabilities are typically

designed to reflect the router�s sense of optimality,
thus an interface with higher probability than an-

other lies on a better path to the given destination.

A router can hence use the probabilities for mak-

ing forwarding decisions in a non-deterministic

manner.
Observation 10. The probabilistic nature of rout-

ing tables in RL algorithms make them suitable for
either single-path or multi-path routing. If a router

deterministically chooses the outgoing link that

has the highest probability, it is implicitly per-

forming single-path routing. If the router distrib-

utes traffic in proportion to the link probabilities,

it is performing multi-path routing.

Learning in RL is based on trial-and-error and
organized in terms of episodes. An episode consists

of a packet finding its way from an originating

source to its prescribed destination. Routing table

probabilities are initialized to small random values

(taking care to ensure that the sum of the proba-

bilities for choosing among all possible outgoing

interfaces is one). A router can thus begin routing

immediately except, of course, most of the routing
decisions will not be optimal or even desirable

(e.g., they might lead to a dead-end). To improve

the quality of the routing decision, a router can �try
out� different links to see if they produce good

routes, a mode of operation called exploration.
Information learnt during exploration can be used

to drive future routing decisions. Such a mode is

called exploitation. Both exploration and exploi-
tation are necessary for effective routing.
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In either mode of operation, choice of the out-

going interface can be viewed as an action taken by

the router and RL algorithms assign credit to ac-

tions based on reinforcement (rewards) from the

environment. The reinforcement may take the form

of a cost update or a measurable quantity such as
bandwidth or end-to-end delay. In response, the

probabilities are then nudged slightly up or down

to reflect the reinforcement signal. When such

credit assignment is conducted systematically over

a large number of episodes and so that all actions

have been sufficiently explored, RL algorithms

converge to solve stochastic shortest-path routing

problems. Since learning is happening concurrently
at all routers, the reinforcement learning problem

for routing is properly characterized as a multi-
agent reinforcement learning problem.

The multi-path forwarding capability of RL

algorithms is similar in principle to hot potato or

deflection routing [1], where each router assumes

that it can reach every other router through any

outgoing interface. The motivation in hot potato
routing is to minimize router buffering require-

ments by using the network (or more precisely the

delay bandwidth product) as a storage element.

Routers maintain routing tables of the form shown

in Fig. 4 (left). However, if more than one in-

coming packet tries to transit the same outgoing

link, instead of buffering the excess packets as

traditional routers do, hot potato routing selects a
free outgoing link randomly and transmits the

packets. The randomly routed packets will even-

tually reach their destinations, albeit by following

circuitous paths.

Observation 11. While the nature of routing tables

in hot potato routing is targeted toward single-

path routing, the ability to deflect packets for the
same destination along multiple links, in fact, re-

alizes soft reachability routing. In contrast to hot

potato routing�s mechanism of indiscriminately

selecting alternatives, the goal in RL is to make an

informed decision about reachable routes.

4.1. Novel features of RL algorithms

Algorithms for reinforcement learning face the

same issues as traditional distributed algorithms,
with some additional peculiarities. First, the envi-

ronment is modeled as stochastic (especially links,

link costs, traffic, and congestion), so routing al-

gorithms can take into account the dynamics of

the network. However, no model of the dynamics

is assumed to be given. This means that RL al-
gorithms have to sample, estimate, and perhaps

build models of pertinent aspects of the environ-

ment. RL algorithms range from those that build

elaborate models to those that function without

ever building a model.

Second, reinforcement from trying out route

possibilities almost always takes the form of eval-
uative feedback, and is rarely instructive [22]. For
instance, a router conducting RL will be told that

its decision to forward packet for destination C

onto outgoing interface i3 resulted in a travel time

of 16 ms, but not if this travel time is good, bad, or

the best possible. Since trip time is composed of all

subpath elapsed times, it is computed (and de-

layed) information, and can only be used as a re-

inforcement signal and not as an instructive signal.
Credit assignment based on the reinforcement

signal is hence central to RL algorithms, and is

conducted over learning episodes. Episodes are

typically sampled to uniformly cover the space of

possibilities. To guarantee convergence in sto-

chastic environments, some form of an iterative

improvement algorithm is often used.

Finally RL algorithms, unlike other machine
learning algorithms, do not have an explicit

learning phase followed by evaluation. Learning

and evaluation are assumed to happen continually.

As mentioned earlier, this brings out the tension

between exploration and exploitation. Should the

router choose an outgoing interface that has been

estimated to have a certain quality metric (ex-

ploitation) or should it choose a new interface to
see if it might lead to a better route (exploration)?

In a dynamic environment, exploration never

stops and hence balancing the two tensions is im-

portant. The combination of trial-and-error, rein-

forcement from delayed information, and the

exploration–exploitation dilemma make RL an

important subject in its own right. For a nice in-

troduction to RL, we refer the reader to [22]. A
more mathematical overview is provided in the

formally titled Neuro-Dynamic Programming [4].
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4.2. Q-routing: an asynchronous Bellman–Ford

algorithm

To make our discussion concrete, we present

the basics of Q-routing [6], one of the first RL al-
gorithms for routing. It is an online asynchronous

relaxation of the Bellman–Ford algorithm used in

distance vector protocols. Every router x main-

tains a measure Qxðd; isÞ that reflects a metric for

delivering a packet intended for destination d via

interface is. In the original formulation presented

in [6], Q is set to be the estimated time for delivery.

We can think of the routing probabilities as being
indirectly derived from Q. There are several alter-

natives here. For instance, the probability that

router x will route a packet for destination d via is
can be defined to be

Qxðd; isÞP
k Qxðd; ikÞ

:

Alternatively, in [6], the authors actually learn a

deterministic routing policy, so the packet is rou-

ted along

argmax
k

Qxðd; ikÞ:

With this formulation, in Fig. 4, data packets

bound for destination A will be routed to interface

i3.
The operation of the routing algorithms is as

follows. All the Q entries are initialized to some

small values. Given a packet, a router x determi-

nistically forwards the packet to the best next

router y, determined from Q. Upon receiving this

packet, y immediately provides x an estimate of its
best Q (to reach the destination). x then updates its

Q-values to incorporate the new information. In

[6], the following update rule is presented:

Qxðd; isÞ ¼ Qxðd; isÞ
þ gfðmax

k
Qyðd; ikÞ þ fÞ � Qxðd; isÞg;

where f accounts for the time spent by the packet

in x�s queue and also the transmission time from x
to y. g is called a learning rate or a stepsize and is a

standard fixture in iterative improvement algo-

rithms [5]. It is typically set to produce a stepsize
schedule that satisfies the stochastic approxima-

tion convergence conditions [4]. It should be clear

to the reader that this is actually a relaxation of the

Bellman–Ford algorithm.

Of course, Q-routing is not guaranteed to con-
verge to the shortest path. In fact, as Subramanian

et al. [21] point out, the algorithm will switch to

using a different interface only when the one with

the current highest Q metric experiences a de-
crease. An improvement (e.g., shorter delay) in an

interface that does not have the highest Q metric

will usually go unnoticed. In other words, explo-

ration only happens along the currently exploited
path. Another problem with the Q-routing algo-

rithm is that the routing overhead is proportional

to the number of data packets.

4.3. Ants as a communication mechanism

To circumvent these difficulties, Subramanian

et al. propose the separation of the data collection
aspects from the packet routing functionality. In

their ant-based algorithms, messages called ants

are used to probe the network and provide rein-

forcements for the update equations. Ants proceed

from randomly chosen sources to destinations in-

dependently of the data traffic. An ant is a small

message moving from one router to another that

enables the router to adjust its interface probabil-
ities. Each ant contains the source where it was

released, its intended destination, and the cost c
experienced thus far. Upon receiving an ant, a

router updates its probability to the ant source

(not the destination), along the interface by which

the ant arrived. This is a form of backward learning
and is a trick to minimize ant traffic.

Specifically, when an ant from source s to des-
tination d arrives along interface ik to router r, r
first updates c (the cost accumulated by the ant

thus far) to include the cost of traveling interface ik
in reverse. r then updates its entry for s by slightly

nudging the probability up for interface ik (and

correspondingly decreasing the probabilities for

other interfaces). The amount of the nudge is a

function of the cost c accumulated by the ant. It
then routes the ant to its desired destination d. In
particular, the probability pk for interface ik is

updated as
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pk ¼
pk þ Dpk
1þ Dpk

whereas the other probabilities are adjusted as

pj ¼
pj

1þ Dpk
;

where Dpk / 1=f ðcÞ, with f being some non-de-

creasing function of the cost c.
The only pending issue is how the ants should

be routed. Subramanian et al. provide two types of

ants. In the first, so-called regular ants, the ants are
forwarded probabilistically according to the rout-

ing tables. This ensures that the routing tables
converge deterministically to the shortest paths in

the network. In the uniform ants version, the ant

forwarding probability is a uniform distribution,

i.e., all links have equal probability of being cho-

sen. This ensures a continued mode of exploration.

In such a case, the routing tables do not converge

to a deterministic answer; rather, the probabilities

are partitioned according to the costs.

Observation 12. The regular ants algorithm treats

the probabilities in the routing tables as merely an

intermediate stage toward learning a deterministic

routing table. Except in the transient learning

phase, this algorithm is targeted toward single-

path routing.

Observation 13. The constant state of exploration

maintained by the uniforms ants algorithm ensures

a true multi-path forwarding capability. This ob-

servation is echoed in [21].

The reader will appreciate the tension between

exploration and exploitation brought out by the

two types of ants. Regular ants are good exploiters
and are beneficial for convergence in static envi-

ronments. Uniform ants are explorers and help

keep track of dynamic environments. Subrama-

nian et al. propose �mixing� the two types of ants to

avail the benefits of both modes of operation.

4.4. Stigmergetic control

The assumption of link cost symmetry made by

both the ant algorithms is a rather simplistic, but
serious one. In addition, the update equations are

not adept at handling dynamic routing conditions

and bursty traffic. The AntNet system of Di Caro

and Dorigo [10] is a very sophisticated reinforce-

ment learning framework for routing. Like the

algorithm of Subramanian et al., this system uses
ants to probe the network and sufficient explora-

tion is built in to prevent convergence to non-

optimal tables in many situations. However, the

update rules are very carefully designed and im-

plemented to ensure proper credit assignment. For

instance, the costs accumulated by ants are not
used to update the link probabilities in reverse.

Instead, a so-called backward ant is generated that
travels the followed path in reverse and updates

the link probabilities in the correct, forward, di-

rection. Cycles encountered by an ant result in the

ant being discarded. Every router also maintains a

model of the local traffic experienced and this

model is adaptively refined and utilized to score

ant travel times.
5. Design methodologies for reachability routing

algorithms

We now have the necessary background to

study how reachability routing algorithms can be

designed. We begin by identifying two dimensions

along which they can be situated.

5.1. Constructive versus destructive algorithms

Constructive algorithms begin with an empty

set of routes and incrementally add routes till they

reach the final routing table. Current network

routing protocols based upon distance-vector,

link-state, and path-vector routing are all exam-
ples of constructive algorithms. In contrast, de-

structive algorithms begin by assuming that all

possible paths in the network are valid, i.e., they

treat the network as a fully connected graph.

Starting from this initial condition, destructive

algorithms cull paths that do not exist in the

physical network. Intuitively, a constructive algo-

rithm treats routes as �guilty until proven inno-
cent,� whereas a destructive algorithm treats routes

as �innocent until proven guilty.� The exploration
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mode of reinforcement learning algorithms allows

us to think of them as destructive algorithms.

Let us consider the amount of work that needs

to be done by an algorithm to achieve reachability

routing. For a destructive algorithm, the work

done is W / c, the number of culled edges. In the
case of constructive algorithms, the work W / l,
the number of added edges.

It is instructive to examine the intermediate

stages of the operation of constructive and de-

structive algorithms. By its very nature, a de-

structive algorithm stays within the space of

connected graph topologies. On the other hand, a

constructive algorithm starts with a null set of
routes and builds up toward the minimum 1-con-

nected topology. In this interim, the routing tables

depict multiple disjoint graphs and do not reflect a

physical reality. Intuitively, this translates to a

hold time, during which a constructive algorithm

cannot route to all destinations, whereas a de-

structive algorithm can. Fig. 5 depicts this sce-

nario.
Tied to the idea of a space of connected topol-

ogies is the notion of incremental computation of

routing tables, as motivated by anytime algorithms.
As originally defined by Dean and Boddy [9], an

anytime algorithm is one that provides approxi-

mate answers in a way that (i) an answer is avail-

able at any point in the execution of the algorithm

and (ii) the quality of the answer improves with
execution time. For our purposes, a chief charac-

teristic of an anytime algorithm is its interrupt-

ibility. In Fig. 5, anytime algorithms can be

thought to be traversing the line(s) in the direc-

tions shown. They are contrasted by algorithms
Fig. 5. Space of solutions for constructive and destructive al-

gorithms.
that experience a sudden transition from the initial

state to the final answer. Such algorithms require

complete system state information to be able to

make such an abrupt transition.

Observation 14. Constructive algorithms cannot
function in an anytime mode, before they derive

the minimally connected topology. In contrast,

destructive algorithms lend themselves naturally to

an anytime mode of operation. This means that a

destructive algorithm can begin routing immedi-

ately.

5.2. Deterministic versus probabilistic routing algo-

rithms

This is a distinction made earlier; deterministic

routing algorithms such as link-state and distance-

vector map a destination address to a specific

output port. Probabilistic algorithms map a des-

tination address to a set of output ports based on

link probabilities.

Observation 15. For a deterministic algorithm,

loops are catastrophic. If a data packet encounters

a loop, an external mechanism (event or message)

is required to break the loop. In contrast, proba-

bilistic algorithms do not require an external

mechanism for loop resolution, since the proba-

bility of continuing in a loop exponentially decays
to zero.

We will explore these classes of algorithms

along an axis orthogonal to the constructive versus

destructive distinction, leading to four main cate-

gories of algorithms (see Fig. 6). Some categories

are more common than others.

1. Constructive deterministic. Current network

protocols based on link-state, distance-vector,

and path-vector algorithms fall in this category.

As mentioned earlier, these algorithms focus on

single-path routing. To extend them to achieve

reachability routing, we need additional qualifi-

ers for routing information. Recall that loops

are fatal for deterministic algorithms; hence
constructive deterministic algorithms need to

qualify the entire path to achieve single-metric



Fig. 6. Design methodologies for reachability routing algo-

rithms. We argue for the use of destructive probabilistic algo-

rithms.
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multi-path routing. This information qualifica-

tion can take two forms. In the first form, rou-

ters build multiple distinct routing tables to

every destination. The data packet then carries

information that explicitly selects a particular

routing table. This form of qualification re-

quires that each router maintain a routing table

entry for every possible path in the network, re-
sulting in significant memory overhead. In the

second form, data packets can carry a list of

previously visited routers which can then be

used to dynamically determine a path to the

destination. This form of qualification trades

time complexity for space complexity and is re-

ferred to as path-prefix routing. Note that path-

prefix routing requires that each router know
the entire topology of the network. While this

is not an issue for link-state algorithms, it is

contrary to the design philosophy of distance-

vector algorithms.

2. Destructive deterministic. Destructive algo-

rithms work by culling links from their initial

assumption of a fully connected graph. In the

intermediate stages of this culling process, the
logical topology (as determined by the routing

tables) will contain a significant number of

loops. Since deterministic algorithms have no

implicit mechanism for loop detection and/or

avoidance, they cannot operate in destructive

mode.

3. Constructive probabilistic. This classification

can be interpreted to mean an algorithm that
performs no exploration. This can be achieved

by having an explicit data collection phase prior
to learning. Such algorithms lead to asynchro-

nous versions of distributed dynamic program-

ming [2]. Intuitively, such an algorithm can be

thought of as a form of link-state algorithm de-

riving probabilistic routing tables rather than
using Dijkstra�s algorithm to derive shortest-

path routing tables. The main drawback of this

approach is that the communication cost of the

data collection phase hinders scalability. This is

also the reason why link-state algorithms are

not used for routing at the level of the Internet

backbone.

4. Destructive probabilistic. By definition, an RL
algorithm belongs in this category. In addition

to the advantages offered by probabilistic algo-

rithms (loop resolution, multi-path forward-

ing), RL algorithms can operate in an anytime

mode. Since many RL algorithms are forms of

iterative improvement, they conduct indepen-
dent credit assignment across updates. This fea-
ture reduces the state overhead maintained by
each router and enables deployment in large

scale networks.

The above categorization clearly builds the case

for investigating reachability routing algorithms

from the perspective of destructive probabilistic

algorithms, particularly as a unified design meth-

odology for large scale networks. The rest of this
paper hence concentrates on RL algorithms and

identifies practical considerations for their design

and deployment.
6. Practical considerations

There is a stronger motivation to focus on de-
structive probabilistic algorithms for reachability

routing. To see this, we need to analyze the re-

quirements of multi-path routing within the con-

straints imposed by the current internetworking

protocol IP. For a deterministic algorithm to

achieve multi-path routing, it needs some mecha-

nism to qualify a route (or path) [24]. There are

two extremes of qualification: (a) explicit route
qualification and (b) implicit route qualification.

In (a), each node in the graph has complete to-

pology information, which it uses to build one or
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more routes to each destination. Each route spec-

ifies the complete path––as a list of routers––to the

destination. When a data packet arrives at an in-

gress router, the router embeds the path into the

data packet header and sends it to the next router.

Each router retrieves the path from the data
packet header, and forwards it to the specified

�next-hop� and so on. This scheme is similar to

source routing since, from a routing perspective,

the source host can be considered synonymous to

the ingress router.

In (b), each router may or may not have com-

plete topology information. The path is selected by

imposing a metric upon the system, whose evalu-
ation returns the same result independent of the

router performing the evaluation. A simple ex-

ample of such a metric is an optimality criterion.

In this case, the path is qualified implicitly, since

the data packet does not carry any explicit path

information. The problem however, is that purely

implicit route qualification leads to single-path

routing. It may be possible to achieve limited
multi-path routing by selecting multiple implicit

criteria and signaling the choice of the routing

criterion within the header of the data packet.

However, practical design constraints do not

permit any form of explicit signaling. In particular,

the IP header does not have any space for either

carrying a complete route or even signaling an

implicit choice of a route. While earlier versions of
IP permitted source-routing, it is not used in the

current Internet due to security concerns. Fur-

thermore, routers need to both know the complete

network topology as well as maintain its consis-

tency to ensure loop resolution. Given the dyna-

mism of the Internet, and the relatively high

communication latencies, it is practically impossi-

ble to consistently maintain network topology in-
formation across routers spanning the globe.

Backbone routing algorithms hence have to work

with incomplete topology information.

Given the above considerations, it is infeasible

to achieve multi-path routing in a deterministic

framework, even with complete knowledge of

network. It thus does not bode well for achieving

multi-path routing with incomplete knowledge.
Our viewpoint is that forsaking deterministic al-

gorithms relaxes consistency constraints, which are
critical for their functioning. This leads us to a

probabilistic routing framework.
7. Elements of an effective RL framework

Our approach to reachability routing exploits

the inherent semantics of Markov decision pro-

cesses (MDPs) as modeled by reinforcement

learning algorithms. RL embodies three funda-

mental aspects [22] of our routing context. First,

RL problems are selectional––the task involves

selecting among different actions. Second, RL

problems are associative––the task involves asso-
ciating actions with situations. Third, RL supports

learning from delayed rewards––reinforcement

about a particular routing decision is not imme-

diate and hence supervised learning methods are

not suitable.

Before developing the elements of an RL

framework, we need to model our problem domain

as an RL task. An RL problem is defined by a set
of states, a set of allowable actions at each state,

rewards for transitions between states, and a value

function that describes the objective of the RL

problem. In our case, the states are the routers and

an action denotes the choice of the outgoing link.

Notice that state transitions here are deterministic,

since a physical link always interconnects the same

two routers. This means that the stochastics of the
problem primarily emerge from any non-deter-

minism in the router�s policy of choosing among a

set of outgoing links. This is in sharp contrast to

typical RL settings where the choice of the action

and the state-transition matrix are stochastic.

Rewards are supplied by the environment and

the value function describes the goal imposed on

the RL algorithm. The value function typically
tries to maximize or minimize an objective func-

tion. For instance, learning shortest-cost paths by

maximization can be modeled by negating link

costs and setting the value function to be equal to

the cumulative path cost. To model basic reach-

ability routing, all rewards are set to zero except

for the egress link leading to the destination, which

is set to 1. To model cost-dependent reachability
routing, rewards are set to reflect the quality of the

paths.
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Given the modeling of an RL problem, we need

strategies for (a) gathering information about the

environment, (b) deriving routing tables by credit

assignment, and possibly (c) building models of

relevant aspects of the environment. This section

studies ways of configuring each of these aspects
and their impact on a reachability routing frame-

work.

7.1. Information gathering

Since RL algorithms employ evaluative feed-

back, all of them rely on sample episodes to gather

information. While data traffic routing is episodic
in its behavior, the information carried by packets

is not expressive enough for RL algorithms. Data

packets only contain the source host address and,
in particular, do not carry any information about

the path traversed to reach the destination. Since it

is not possible to determine the ingress router from

the source host address and because routers

maintain routing tables only to other routers, the
information carried in a data packet is insufficient

to aid routing. Furthermore data packets do not

contain any fields that can carry path-cost metrics

that are required for generating reinforcement

signals in cost-dependent reachability routing.

This argument forms the basis for explicit infor-

mation carriers. In current networks this is

achieved by routing messages. In the context of
RL algorithms, the same effect is achieved by

ants.

Even with explicit information carriers, it is

imperative to distinguish data traffic patterns

from ant/control traffic patterns. Simple-minded

schemes like Q-routing fall into the trap of learn-

ing about only those paths traversed by data

traffic. Ideally the construction and maintenance
of a routing table should be independent of the

data traffic pattern, since it is well known that the

data traffic on the Internet is highly skewed in its

behavior [7]. While it may be argued that rein-

forcing well used paths (�greasing�) is desirable, it

does not lead to reachability routing or even multi-

path routing.

The ant algorithms described in Section 4.3 can
be viewed as a mechanism to segregate control
traffic from data traffic patterns. The parameters

of interest are the rate of generation of ants, the

choice of their destinations, and the routing policy

used for ants. Current network routing protocols

generate routing messages periodically at a rate

independent of their target environment. The sig-
nature pattern here is the information carried by

the control traffic and not the rate of control

traffic. This suffices because these are deterministic

algorithms and rate merely influences the recency

of the information. In contrast, RL algorithms

perform iterative stochastic approximation and

the rate of ant generation implicitly affects their

convergence properties [10], and hence the quality
of the learned routing tables. It is for this reason

that considerable attention is devoted to tuning

ant generation distributions. For instance, RL al-

gorithms may selectively use a higher ant gene-

ration rate to improve the quality of routes to

oft-used destinations.

The second parameter of interest is the choice

of ant destinations. It may be argued that it is
beneficial to use non-uniform distributions favor-

ing oft-used destinations. For instance, in the cli-

ent–server model prevalent in the current Internet,

data traffic is inherently skewed toward servers.

Intuitively, it appears that a non-uniform dis-

tribution favoring servers will lead to better per-

formance. However, from the perspective of

reachability routing, we would like to choose
destinations that will provide the most useful re-

inforcement updates, which are not necessarily the

oft-used destinations. In the absence of a model of

the environment, a uniform distribution policy at

least assures good exploration. Model-based RL

algorithms studied later in this section have more

sophisticated means of distributing ant destina-

tions.
The policy used to route ants affects the paths

that are selectively reinforced by the RL algo-

rithm. If the goal of the RL algorithm is to do

some form of minimal routing, it is beneficial to

improve the quality of �good� routes that have al-

ready been learnt. To achieve this, the ant routing

policy is the same as the policy used to route data

traffic. However, from a reachability routing per-
spective our goal is to discover all possible paths.
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Hence the policy used to route ants is independent

of the data traffic carried by the network. It is

interesting to note that cost-dependent reachabil-

ity routing may be achieved by using a judicious

mix of the above two routing policies. This is not

as intuitive as it appears––see Observation 2 of the
next section.

7.2. Credit assignment strategies

In the context of an RL framework, effective

credit assignment strategies rely on the expres-

siveness of the information carried by ants. The

central ideas behind credit assignment are deter-
mining the relative quality of a route and appor-

tioning blame. In our domain, credit assignment

creates a �push–pull� effect. Since the link proba-

bilities have to sum to one, positively reinforcing a

link (push) implies negative reinforcements (pull)

for other links. All the RL algorithms studied

earlier use positive reinforcement as the driver for

the push–pull effect.
In the simplest form of credit assignment, ants

carry information about the ingress router and

path cost as determined by the network�s cost

metrics. At the destination, this information can be

used to derive a reinforcement for the link along

which the ant arrived [21] (backward learning).

Asymmetric link costs––e.g., in technologies like

xDSL, cable modems––can be accommodated by
using the reverse link costs instead of forward link

costs.

Another strategy is to reinforce the link in the

forward direction by sending an ant to a desti-

nation and bouncing it back to the source [10].

The ant carries a stack where each element of the

stack describes a node, the accumulated path cost

to reach that node and the chosen outgoing in-
terface. When the ant reaches its destination, it is

turned back to its source. During the backtrack-

ing phase, the information carried by the ant

reinforces the appropriate interface in the inter-

mediate nodes.

The above discussion has concentrated on �what
to reinforce,� rather than �how much to reinforce.�
For cost c accumulated by an ant, most RL al-
gorithms generate a reinforcement update that is
proportional to 1=f ðcÞ where f ðcÞ is a non-de-

creasing function of c. Sophisticated approaches

may include local models of traffic/environment to

improve the quality of the reinforcement update.

Di Caro and Dorigo [10] provide an elaborate

treatment of this subject.

7.3. Models in RL algorithms

The primary purpose of building a model is to

improve the quality of reinforcement updates. For

instance, in a simple model, a router may maintain

a history of past updates and rely on this experi-

ence to generate different reinforcement signals,
even when given the same cost update. This is an

example where the router has a notion of a �ref-
erence reward� that is used to evaluate the current

reward [22]. More sophisticated models––such as

actor-critic––have an explicit �critic� module that is

itself learning to be a good judge of rewards and

reinforcements.

A model-based approach can also be used for
directed exploration, where the model suggests

possible destinations and routes for an ant. In RL

literature, this is referred to as the use of a model

for planning. Here, it is important that the model

track the dynamics of the environment faithfully.

An inconsistent model can be worse than having

no model at all, in particular, when the environ-

ment improves to become better than the model
and the model is used for exploration. Of the RL

algorithms studied in this paper, Q-routing and the

algorithms of Subramanian et al. [21] are model-

free. The stigmergetic framework of [10] builds

localized traffic models to guide reinforcement

updates.

While a model-based approach improves the

quality of reinforcement updates, it effectively vi-
olates the notion of independent credit assign-

ment. The main benefit of forsaking independent

credit assignment is that we can maintain context

across learning episodes. However, we have to be

careful to ensure that convergence of the RL al-

gorithm is not compromised. Table 1 summarizes

the main characteristics of RL algorithms that

have to be configured for a reachability routing
solution.



Fig. 7. Two �velcro� topologies that require substantially dif-

ferent types of information gathering mechanisms.

Table 1

Characteristics of an RL formulation for reachability routing

Modeling the RL problem

States

Actions

Rewards

Value functions

Information gathering

Rate of ant generation

Choice of ant destinations

Ant routing policy

Credit assignment strategies

What to reinforce

Backward directions

Forward directions

How much to reinforce

Defining update formulas

Models in RL

For learning

For planning
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8. Observations

We now present a series of observations iden-

tifying research issues in the application of RL

algorithms to the reachability routing problem.

1. Many RL algorithms model their environment

as either a Markov decision process (MDP) or
a partially observable Markov decision process

(POMDP). Both MDPs and POMDPs are too

restrictive for modeling a routing environment.

For instance, to avoid network loops the choice

of an outgoing link made at a node depends on

the path used to arrive at the node. This form of

hidden state has been referred to as non-Markov
hidden state [16] and can be solved with addi-
tional space complexity. However, there are

other hidden state variables (e.g., downstream

congestion) that cannot be locally observed

and which need to be factored into the routing

decision. While additional information qualifi-

ers may improve the quality of the routing deci-

sion, the dynamics of the network, the high

variance of parameters of interest, and commu-
nication latencies make it practically impossible

to eliminate hidden state. Hence, any effective

RL formulation of the routing problem has to

work with incomplete information.
2. Since RL algorithms work by iterative improve-

ment, the rate of reinforcement updates and the

magnitudes of the updates affect their conver-

gence. Consider the �velcro� topologies shown

in Fig. 7. Ideally, in Fig. 7 (left) we would like

a multi-path routing algorithm to distribute

traffic in a 1:10 ratio between the direct A !
B path and the other paths. In Fig. 7 (right)
we desire a multi-path routing algorithm that

can distribute traffic in a 2:1 ratio between the

direct A ! B path and the other paths.

In Subramanian et al.�s formulation of the RL

algorithm [21], uniform ants are used for ex-

ploration and regular ants are used as shortest-

path finders. Since uniform ants explore all

links with equal probability, in Fig. 7 (left) they
will carry high cost updates for the �loopy� path
with high probability. The probability of car-

rying the correct path cost update of 10 can be

made infinitesimally close to zero. On the other

hand, regular ants will discover and converge to

the path cost of 10 along the loopy part of the

graph. To achieve our goal of multi-path rout-

ing we can use a combination of uniform ants
and regular ants, relying on the former to pro-

vide the correct cost update for the direct

A ! B path and the latter for the loopy path.

In this example the learning problem has been

effectively decomposed into two disjoint sub-

tasks, each of which is suited for learning by a

different type of ant.
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On the other hand, in Fig. 7 (right), regular ants

will converge to the direct A ! B path. Since

uniform ants are incapable of deriving correct

cost updates for the loopy path, both uniform

and regular ants reinforce the direct A ! B

path. In this topology, even a mix of regular
and uniform ants is incapable of achieving

multi-path routing.

The AntNet algorithm [10] recognizes that

loops can cause inordinately high cost updates

and eliminates them by destroying the cost up-

date. This effectively impacts the rate of re-

ceived updates. While the beneficial side-effect

of this strategy is that it reduces network traffic,
its performance is no different from that of

uniform ants which carry very small updates.

The drastically reduced rate of correct updates

equates the reinforcement effect to that of uni-

form ants.

Thus, information-gathering mechanisms in a

network should take into account the rate-

based nature of RL algorithms. Even seemingly
intuitive exploration mechanisms (uniform

ants) can be misled.

3. The above observation leads us to the question:

can an RL algorithm adapt its behavior based

on its �position� within the network? This re-

quires (a) additional information qualifiers to

determine the position, and (b) co-ordinating

the operation of the RL algorithm executing
at distinct nodes [12]. For instance, an RL algo-

rithm may provide an additional information

qualifier that tracks the rate of successful explo-

rations. This information can be used to cluster

the nodes into equivalence classes, each of

which involves co-ordinated reinforcement. In

Fig. 7, the rate of successful explorations along

the loopy paths can guide the nodes into co-
ordination.

4. The reader may recall that our discussion so far

has focused on soft reachability. To achieve

hard reachability, each router needs to know

the predecessor path of an arriving packet.

As mentioned earlier, practical considerations

preclude data packets from carrying this in-

formation. The question here is: can we do
better than soft reachability using an RL algo-

rithm?
For instance, given a finite number of memory

slots in a data packet header, can we embed

router identifiers of sufficient resolving power

that can eliminate certain categories of loops?

We can pose this as a problem of maximizing/

minimizing the probability of achieving a goal
function. Goal functions may be eliminating

more loops, eliminating larger/expensive loops,

or exiting a loop, once entered.

5. RL algorithms typically use positive reinforce-

ment as a driver for credit assignment. In this

mode of operation, link probabilities go down

(are negatively reinforced) only when some

other link receives a positive reinforcement. Is
it possible to have a primarily negative mode

of reinforcement? This is harder than it appears.

To see why, consider what negative reinforce-

ment might mean in a reachability routing

framework.While positive reinforcement merely

indicates that a destination may be reached via

the outgoing link, negative reinforcement im-

plies that the destination definitely cannot be
reached without encountering a loop. Note that

reachability routing is fundamentally a binary

process––destinations are either reachable or

not reachable. Reinforcement of reachable

destinations affords significant laxity in the de-

cision process whereas non-reachability is nec-

essarily definitive.

Such a drastic form of negative reinforcement
constitutes instructive feedback as opposed to

evaluative feedback, since we are informing the

algorithm what the right answer should be.

With evaluative feedback, shades of (positive)

reinforcement can exist which will interact to

ensure the convergence of the RL algorithm.

With instructive feedback, we should be careful

to ensure that convergence properties are not
affected by incorrect instructions. This means

that the onus is on us to explore all alternatives

before concluding that a link does not lead to a

given destination.

To create an RL algorithm that uses negative

reinforcement, let us study situations where

definite conclusions can be made about the non-

reachability of destinations. The simplest case is
illustrated in Fig. 8 (left). Here, if an ant origi-

nating at A and destined for B ends up at node



Fig. 8. Three topologies for assessing the amount of informa-

tion qualification required for negative reinforcement.
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C, C can send a negative reinforcement signal

indicating that B is not reachable via i2. The
negative reinforcement signal relies on the fact

that node C can clearly determine that it is a

leaf node and is not the intended destination.

Hence, no loop-free path to node B can be
found via node C. At a leaf node, knowledge of

the destination is sufficient to assess the avail-

ability of a loop-free path.

This simplistic scheme is not capable of re-

solving paths in Fig. 8 (middle). Consider an

ant originating at node A and destined for node

E. If the ant traverses the path � A; i1 �,

� B; i4 �, � D; i5 �, � C; i3 �, node B can de-
termine that the ant has entered a loop and send

a negative reinforcement signal to node C. The

negative reinforcement signal tells node C that

destination E is not reachable via link i3, which
is incorrect. The observation here is that the

destination address alone is insufficient to

qualify the negative reinforcement signal.

Let us augment the information maintained by
the routing algorithm to include source ad-

dresses. The routing table thus contains entries

that associate a source–destination address

pair with an outgoing link, a scheme called

source–destination routing. If we employ source–

destination routing on the network in Fig. 8

(middle), B�s negative reinforcement signal ef-

fectively tells node C that link i3 (in the C to B
direction) cannot be used for a packet origi-

nating at A and destined for E, which is correct.

Likewise, the reader can verify that the counter-

clockwise loop from B to D through C can be

resolved.
Before we adopt this as a solution, consider Fig.

8 (right). In this case, a negative reinforcement

signal from B indicates to C that link i3 cannot
be used for a packet from A destined for E,

which is incorrect, since a packet from A ar-

riving at C on link i7 can indeed use outgoing
link i3. In this case, we need an additional in-

formation qualifier (the incoming link) to re-

solve the negative reinforcement signal.

The astute reader may have observed that even

this information qualification is insufficient;

technically, the entire predecessor path may be

required to resolve negative reinforcement sig-

nals. The issue of interest here is, for a given
topology, is it possible to adaptively determine

the �right� information qualifier to resolve neg-

ative reinforcement signals?

6. Reinforcement learning supports a notion of hi-

erarchical modeling (e.g., see [11]) where differ-

ent subnetworks/domains have different goals

(value functions). Is it possible to have an infor-

mation communication mechanism so that this
hierarchical decomposition is automatic? Fun-

damentally, can RL be used to suggest better

organization of communication networks?

7. Is it possible to classify/qualify graphs based on

the expected performance of RL algorithms?

Akin to Observation 3 above, this information

can then be used for specializing RL algorithms

for specific routing topologies. For instance, in
the velcro topology studied earlier, the RL algo-

rithm operating in the loopy part can determine

that uniform ants have a low probability of

reaching the destination and change its behav-

ior in only this part of the network. Such a

scheme can be combined with the previous ob-

servation to create a more fluid definition of hi-

erarchical decompositions.
8. The Internet�s routing model evolved from its

original co-operative underpinnings to a com-

petitive model, owing to commercial interests.

Each administrative domain uses an internal

value function that are not communicated to

their peer domains. It is of scientific interest to

determine the value function employed by a

routing protocol.
Inverse reinforcement learning (IRL) [19] is a

recently developed framework that can be used
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to address precisely this question. As the name

suggests, IRL seeks to reverse-engineer the va-

lue function from a converged policy. IRL�s
assumption that the policy is optimal with re-

spect to some metric generally holds true in the

routing domain. Operationally, IRL can be
used on the temporal and spatial distributions

of probe packets traversing an unknown net-

work––which is treated as a black box.

If IRL can be used to approximate the value

function, it would enable differentiated services

routing, without requiring any changes to the

existing backbone routing infrastructure. An

AS can observe the end-to-end behavior of
another AS and use it to improve the per-

formance for its own clients. From a game-

theoretic perspective, this raises interesting

questions of how competition and co-operation

can co-exist among agents conducting inverse

reinforcement learning.
9. Design and implementation of a reachability

routing algorithm

As a demonstrator of the many ideas presented

in this paper, we present the implementation and

evaluation of a multi-path reachability routing

algorithm in the reinforcement learning frame-
Fig. 9. Uniform ants tend to reinforce a path with the least amount of

one of many cheapest paths (middle), or actually the costliest path (r
work. The primary design objective here is to

achieve cost-sensitive multi-path forwarding while

at the same time, eliminating the entry of loops as

much as possible. We begin with the uniform ants

version of the Subramanian et al. [21] routing al-

gorithm (as it is designed with multi-path routing
in mind) and describe a series of improvements,

culminating in a new model-based reachability

routing algorithm.

Let us consider how the uniform ants algorithm

behaves in the three �velcro� topologies of Fig. 9.

These topologies have the same underlying graph

structure but differ in the costs associated with the

main branch paths (the direct path from 0 to 19,
and the path through nodes 1, 7, and 13). Uniform

ants explore all available interfaces with equal

probability; while this makes them naturally suit-

able for multi-path routing, it also creates a ten-

dency to reinforce paths that have the least

amount of decision making. To see why, recall that

the goodness of an interface is inversely propor-

tional to a non-decreasing function of the cost of
the path along that interface. The cost is not sim-

ply the cost of the shortest path along the inter-

face, but is itself assessed by the ants during their

exploration; hence the routing probability for

choosing a particular interface is implicitly de-

pendent on the number of ways in which a costly

path can be encountered along the considered
decision making. Such a path may be the cheapest (left), among

ight).
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interface. The presence of loops along an interface

means that there are greater opportunities for

costly paths to be encountered (causing the inter-

face to be reinforced negatively) or for the ants to

loop back to their source (causing their absorp-

tion, and again, no positive reinforcement along
the interface). The basic problem can be summa-

rized by saying that �interfaces that provide an

inordinate number of options involving loops will

not be reinforced, even if there exist high-quality

loop-free subpaths along those interfaces.� Math-

ematically, this is a race between the negative re-

inforcements due to many loops (and hence

absorptions), and positive reinforcements due to
one (or few) short or cheap paths. As a result, the

interface with the fewer possibilities for decision

making wins, irrespective of the path cost. Notice

that using regular ants to prevent this incessant

multiplication of probabilities is not acceptable, as

we will be giving up the multi-path forwarding

capability of uniform ants.

Ideally, we want our ants to have selective
amnesia, behaving as uniform ants when it is im-

portant to have multi-path forwarding and meta-

morphing into regular ants when we do not want

loops overshadowing the existence of a cheap,

loop-free, path. We present a model-based ap-

proach that achieves this effect by maintaining a

statistics table independent of the routing table.

The basic idea is to make routers recognize that
Fig. 10. Two velcro topologies with substantially differe
they constitute the fulcrum of a loop with respect

to a larger path context. For instance, in Fig. 9,

nodes 1, 7, and 13 form fulcrums of loops, which

should not play a role in multi-path forwarding

from, say, node 0 to node 19. The statistics table

keeps track, for every router (node) and destina-
tion, the number of ants generated by it and that

returned (without reaching its intended destina-

tion). Using this statistic, for instance, node 1 can

reason that all ants meant for destination 19 re-

turned to it, when sent along the interface leading

to node 2. This information can be used to reduce

the scope of multi-path forwarding, on a per-des-

tination basis.
Notice that it would not do to accumulate the

statistics for all ants passing through a given node

and intended for a given destination. To see why,

consider Fig. 10––both graphs here have fulcrums

but the relative sizes of the subgraphs situated at

the fulcrums are different. In Fig. 10 (right), the

loop situated at node 7 is considerably larger than

the one situated at node 15. Consider an ant des-
tined for node 0 of Fig. 10 (right) and generated by

one of the nodes in the subgraph rooted at node 7.

Let us examine the statistics collection from the

viewpoint of the fulcrum node 7. The ant has a

considerable probability of looping back into the

subgraph after visiting node 7, where it will even-

tually reach its sender again, and be absorbed.

From node 7�s point of view, through which the
nt sizes of subgraphs rooted at the fulcrum nodes.
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ant has passed, this would count as an ant that

successfully reached its destination; leading to an

incorrect reinforcement of an interface that is ac-

tually entering a loop. To circumvent this problem,

it is imperative that node 7 maintain statistics

about only those ants that it generates.
The role of the statistics table is to serve as a

discriminant function for the choices indicated by

the routing table. While the routing table entries

reflect the reinforcement provided by the uniform

ants, the statistics table effectively allows us to

discard those interfaces that had a 100% proba-

bility of leading into a loop (assuming lossless

links). We thus use the statistics table to reduce the
scope of probability distribution to only those in-

terfaces that have a <100% probability of a loop-

free path. The reader might argue that we can go a

step further and deterministically choose the in-

terface that has the lowest probability (from the

statistics table) of leading into a loop. Besides

going against the spirit of multi-path routing, this

approach spells danger in transient network con-
ditions where larger loops envelop the fulcrum

loops, and once a packet enters the larger loop, it

might never reach its intended destination. In other
words, one should be careful that improvements to
reinforcement learning do not collectively constitute
the realization of a deterministic algorithm.

Two final improvements over the uniform ants

algorithm of Subramanian et al. [21] are included
in our implementation. The approach given in [21]

reinforces all subpaths along the path taken by an

ant, and this can cause some nodes to experience

greater reinforcements simply because they present

interfaces to more destinations than other nodes.

Our solution to this problem is to conduct the

reinforcement updates at a node only if that node

was the intended destination of the ant. Arguably
this goes against classical reinforcement learning

algorithms but this consideration is echoed by

many other researchers as important for practical

deployment (e.g., see [10] for a different perspective

on such �selective� subpath reinforcement). And

finally, in Subramanian et al.�s original formula-

tion, the probabilities for forwarding uniform ants

are apportioned among all interfaces, including the
interface along which the ant arrived. In our �no
send-back� implementation, the incoming interface
will not be chosen as a possible outgoing interface

unless the node is a leaf node.

9.1. Results

The implementation choices outlined above
lead to a new model-based approach to achieving

cost-sensitive reachability routing. In contrast, [21]

uses a model-free approach, which does not

achieve multi-path routing in �loopy� topologies.
While [10] presents a model-based approach to

routing, the model is used to improve routing de-

cisions by taking into account local traffic distri-

butions at each node. This approach also does not
achieve multi-path routing in the topologies con-

sidered here.

In this section, we present simulation results

from our implementation that clearly show the

performance benefits of our approach. We focus

on topologies modeled after the velcro graph––

topologies with significant amount of decision

making––for two reasons. First, these topologies
embody the most difficult situations that can be

encountered by a reachability routing algorithm.

Second, it is very hard for deterministic algorithms

to achieve true multi-path routing on such topol-

ogies without encountering an combinatorial ex-

plosion in state. Finally, existing RL approaches

to multi-path routing perform poorly on these

topologies, thus discriminating the benefits of our
approach. It should be stressed that our approach

is generalized and works for a wide variety of to-

pologies, presenting the greatest benefits in topol-

ogies that involve significant decision making.

Recall that our approach starts with the uni-

form ants algorithm of Subramanian et al. [21] and

adds the three crucial components of (i) the sta-

tistics table, (ii) no subpath reinforcement, and (iii)
no send back. In all the simulations presented

here, we begin by apportioning the probabilities

among all available interfaces, conduct the rein-

forcement updates and, when the statistics have

stabilized begin employing the statistics table in

conjunction with the learned routing probabilities.

This switching threshold was chosen to allow sta-

bilization of the routing table entries (as deter-
mined by the conventional reinforcements) and

facilitates a meaningful comparison.
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To measure the performance of our cost-sensi-

tive reachability routing algorithm, we coded a

detailed discrete event simulator in C, which sim-

ulates a standard point-to-point topology-based

network. The simulated network is modeled as a

set of nodes interconnected over point-to-point
links, with an associated cost. The discrete event

simulator was derived from work done in [23], and

has been used in several networking courses to

model routing algorithms.

We begin with the simple velcro topology

shown in Fig. 11 (left) where the two paths from

node 0 to 19 have a 2:1 cost ratio, if the loops in

the left path are avoided. As Fig. 11 (right) shows,
the uniform ants initially prefer the loop-free path

by a ratio of 3:1. When the statistics table is em-

ployed, this ratio gets moderated to 2:1 which

more accurately reflects the cost ratios of the two

paths. For a more dramatic demonstration of the

effect of the statistics table, let us turn to the to-

pologies shown in Fig. 12 (left).

In the first topology of Fig. 12, the cost ratio is
1:25 (in favor of the loopy path). In the second

topology, the cost ratio is 1:2.5. As the results

show, both graphs demonstrate a marked change

in the routing probabilities at switchover time

(0.125 on the �Normalized Time� axis). The effect in
Fig. 12 (top) is to further drive the probabilities
Fig. 11. (left) A velcro topology with cost proportion 2:1 between the

model-based reinforcement learning, revealing the convergence to the
away from each other, from the uniform ants es-

timate of 55% versus 45% to the model-based as-

sessment of 96% versus 4%. The latter percentages

very nearly reflect the cost ratio of 1:25.

Fig. 12 (bottom) clearly demonstrates the ef-

fectiveness of our model-based approach for cost-
sensitive reachability routing. Recall from our

earlier discussion that the uniform ants approach

chooses the higher cost non-loopy path since it

involves fewer decisions. In our model-based ap-

proach, node 0 begins by assigning a probability of

0.5 to each of the two links leading to node 19.

Initially, the uniform ants approach tends to re-

inforce the higher cost non-loopy path. After the
statistics table goes into effect, we observe a dra-

matic flip in the routing probabilities, which then

converges to the ratio of the path costs.

Fig. 13 shows a topology similar to what we

have considered so far, except that both the loopy

and loop-free paths have the same cost. As the

results show, use of the statistics table causes both

probabilities to converge to near equal values. Fig.
14 drives home the point by introducing a third

path between nodes 0 and 19 and our model-based

approach once again learns to apportion equal

probability among the loopy and the middle paths.

As indicated by the costs, we obtain a 2:2:1 ratio of

choosing among all three paths.
left and right paths, from node 0 to node 19. (right) Results of

2:1 cost ratio.



Fig. 12. (top left) A velcro topology with cost proportion 1:25, and (top right) corresponding results for model-based reinforcement

learning. (bottom left) A topology with cost proportion 1:2.5, and (bottom right) corresponding results.
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Fig. 15 describes a new topology and an ex-
periment designed to show the importance of

avoiding subpath reinforcement. Fig. 15 (middle)

shows the results with subpath reinforcement and

reveal that both paths from node 5 to node 2 are

reinforced near equally, even though the path

employing the direct link to node 4 has a higher

cost. When subpath reinforcement is removed, as

Fig. 15 (right) shows, the roundabout path gets a
greater reinforcement, as desired.

Finally, Fig. 16 shows the operation of our al-

gorithm on a topology where there are loops in-

volving the fulcrums, in addition to loops rooted

at the fulcrums. This is an example where we want
loop resolution at one level, while retaining some
element of the loops at another level (to achieve

multi-path routing). All arrows in Fig. 16 depict

interface probabilities for routing to destination

node 19, from various nodes. To understand the

results, let us look at node 1 which has two paths

of equal cost (and equal hops) to the destination.

Nevertheless, the steady state routing probabilities

reflect a preference to use the interface leading to
node 7 over the one leading to node 13. This is

because our algorithm tends to choose paths that

have higher probability of reaching the destina-

tion, factoring all the possibilities for entering

loops and absorption. As a simple recurrence



Fig. 13. (left) A velcro topology with equal cost paths from node 0 to node 19 and (right) corresponding results.

Fig. 14. (left) A velcro topology with three paths from node 0 to node 19 and (right) corresponding results.

Fig. 15. (left) A �dumbbell� topology where the direct path from node 5 to node 4 is costlier than the roundabout path. (middle) Using

subpath reinforcement does not capture this aspect, whereas (right) avoiding subpath reinforcement learns the correct apportionment

of probabilities.
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Fig. 16. A topology with loops at many levels, the goal is to

learn to route to node 19. The results of model-based rein-

forcement learning are superimposed as arrows at the various

nodes. Different colors indicate different choices of starting

nodes and the thickness of arrows indicate greater probabilities

along those interfaces (for a given choice of starting node).
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calculation will show, node 7 is better than node 13

in terms of probability of reaching 19.
10. Conclusion

In this paper, we have argued for the rein-

forcement learning approach to achieve reach-

ability routing, where the goal of the routing

algorithm is to efficiently distribute traffic among

all paths leading to a destination. We also pre-
sented a new model-based RL algorithm, which

achieves true cost-sensitive reachability routing,

even in network topologies that pose problems to

both deterministic routing as well as classical RL

formulations. The evaluation results clearly indi-

cate that our approach achieves true multi-path

routing, with traffic distributed among the multiple

paths in inverse proportion to their costs. By
helping maintain the incremental spirit of current

backbone routing algorithms, this approach has

the potential to form the basis of the next gener-

ation of routing protocols, enabling a fluid and

robust backbone routing framework. Several
possibilities for future work are now being in-

vestigated, many along the ideas presented in

Section 8.
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